Forecasting GDP Growth Using Disaggregated GDP Revisions
نویسندگان
چکیده
منابع مشابه
Forecasting GDP Growth Using ANN Model with Genetic Algorithm
Applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. Artificial Neural Networks (ANN) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. Most ANN models applied in Economics use the gradient descent method as their learning algorithm. However, t...
متن کاملGDP Revisions: Measurement and Implications
Gauging economic conditions in real time is challenging, in part because economic data are difficult to measure and subject to subsequent revision as more information becomes available. This article investigates the pattern and size of revisions to real gross domestic product (GDP) over the past decade or so. Revisions to early estimates of GDP can be large and, over the past 15 years, have ten...
متن کاملforecasting gdp growth using ann model with genetic algorithm
applying nonlinear models to estimation and forecasting economic models are now becoming more common, thanks to advances in computing technology. artificial neural networks (ann) models, which are nonlinear local optimizer models, have proven successful in forecasting economic variables. most ann models applied in economics use the gradient descent method as their learning algorithm. however, t...
متن کاملForecasting New Zealand’s Real GDP
Recent time series methods are applied to the problem of forecasting New Zealand’s real GDP. Model selection is conducted within autoregressive (AR) and vector autoregressive (VAR) classes, allowing for evolution in the form of the models over time. The selections are performed using the Schwarz (1978) BIC and the Phillips-Ploberger (1996) PIC criteria. The forecasts generated by the data-deter...
متن کاملPredicting Recessions: Forecasting US GDP Growth through Supervised Learning
Machine learning algorithms have gained much popularity in finance, where the abundance of training examples and high-frequency sampling rates produce datasets that are amenable to successful regression. In macroeconomics, however, where data is scarce and sampling rates are far lower, learning algorithms have not been extensively explored, and even within the sparse literature success has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2019
ISSN: 1556-5068
DOI: 10.2139/ssrn.3435801